
HIGH CURRENT SWITCHING **APPLICATION**

DESCRIPTION

The UTC 2SD1802 applies to voltage regulators, relay drivers, lamp drivers, and electrical equipment.

FEATURES

- *Adoption of FBET, MBIT processes
- *Large current capacity and wide ASO
- *Low collector-to-emitter saturation voltage
- *Fast switching speed

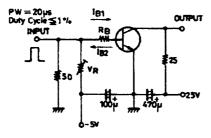
1: BASE 2: COLLECTOR 3: EMITTER

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise specified)

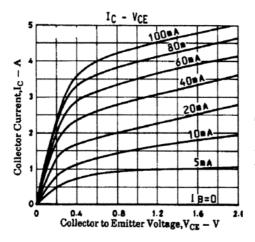
PARAMETER	SYMBOL	VALUE	UNIT
Collector-Base Voltage	Vсво	60	V
Collector-Emitter Voltage	VCEO	50	V
Emitter-Base Voltage	VEBO	6	V
Collector Power Dissipation	Pc	1	W
Tc=25°C		15	W
Collector Current(DC)	lc	3	Α
Collector Current(PULSE)	Icp	6	Α
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-55 ~ + 150	°C

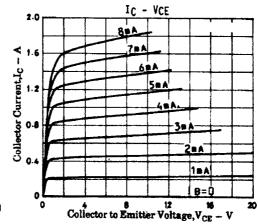
ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified)

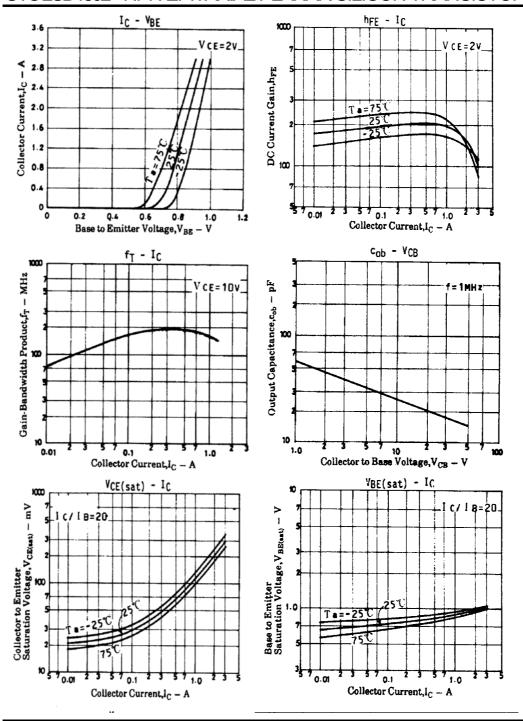
CLEOTITIONE OF A TOTAL TOTAL (18-23 C, unless offerwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN TYP		MAX	UNIT		
Collector Cutoff Current	Ісво	V_{CB} =40 V , I_E =0			1	μΑ		
Emitter Cutoff Current	IEBO	V _{EB} =4V,I _C =0		1	μА			
DC Current Gain (note)	h _{FE1}	V _{CE} =2V, Ic=100mA 100		560				
	h _{FE2}	V _{CE} =2V, Ic=3A	35					
Gain-Bandwidth Product	fT	V_{CE} =10 V , I_{C} =50 mA		150		MHz		
Output Capacitance	Cob	V _{CB} =10V,f=1MHz		25		pF		
C-E Saturation Voltage	VCE(sat)	$I_C=2A,I_B=100mA$		0.19	0.5	V		
B-E Saturation Voltage	VBE(sat)	$I_C=2A,I_B=100mA$		0.94	1.2	V		
C-B Breakdown Voltage	V(BR)CBO	$I_{C}=10\mu A, I_{E}=0$	60			V		
C-E Breakdown Voltage	V(BR)CEO	I _C =1mA,R _{BE} =∞	50			V		
E-B Breakdown Voltage	V(BR)EBO	$I_E=10\mu A, I_C=0$	6			V		
Turn-on Time	ton	See test circuit		70		ns		
Storage Time	tstg	See test circuit		650		ns		
Fall Time	tf	See test circuit		35		ns		


UTC UNISONIC TECHNOLOGIES CO. LTD

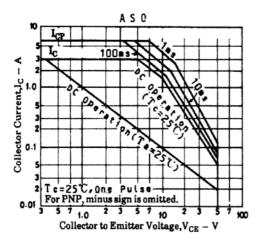
1

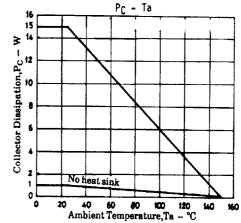

CLASSIFICATION OF h_{FE1}


RANK	R	S	T	U
RANGE	100-200	140-280	200-400	280-560


TEST CIRCUIT (Unit : resistance : Ω , capacitance : F)

I C=10 | B1=-10 | B2=1A





UTC UNISONIC TECHNOLOGIES CO. LTD

3

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC

UNISONIC TECHNOLOGIES CO. LTD